ALLOWANCE FOR GAS BLOWING
IN SUPERSONIC FLOW OVER A WEDGE

M. P. Ovsyannikov UDC 533.601.15

The static pressure on the dividing streamline in intense blowing of a gas through the wall of a
wedge in a supersonic flow is determined,

In several investigations ([1, 2], and others) the experimental data were presented basically in the form of
angle of inclination of the contact surface. Bott [1] discussed the effect of the viscosity on the dividing stream-
line on the experimental results, but presented no numerical results for the influence of this factor onthe shape
of the dividing streamline,

The present author attempts to show how to determine the numerical effect of viscosity during intense
blowing on a wedge on the position of the contact surface, using the relations at the shock wave and a correla-
tion of [1].

We consider the exact relation of [3] for a perfect gas; this relates the flow deviation and the pressure
difference in passing through a shock wave, When gas is blown through the wall of the wedge and the shock
wave is attached, one can write this relation in the form

y+1 M2 C, 1
1— . : e
tg (0 - /\6) == 1/7 ztl Cp 2 A/[i —1 9
[ “Floo Z_Cp . 1 ] '?71 MQ Cp . (1)
N 5 2 5 ~

Carrying out a transformation in Eq. (1), we obtain
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where A6, according to [1], is given by the relation
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Since the pressure can be determined by calculating the viscous interaction, we can solve Eq. (2) by the method
of successive approximations.

1. TFirst Approximation (Rex = «)

Even in this simplest case it is difficult to solve Eq. (2) in the general form. Therefore, we use a result
from thin body hypersonic theory, which gives only an approximation, but a value so close to the true root p,
that we can use certain methods to obtain further improvement, Let
1
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Then
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Since p =1, the quantity
Eq. (3):

—1 -
v - can be neglected in comparison with p and we obtain the following result from
- |4 KT - : 1= ) po
pa—[—*l‘l;—)—"] Pl — vy + D KKl p— -HED K —o0. @
We solve this equation by the method described in [4].

Introducing the notation
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into Eq. (4), we obtain
f)=x4ax?-bx—1=0. (5)
If > 2, then
1 S o 20— 4
e S Ky >0, —aKy -+ 1/ 2Ky -+ Ky>0 (6)
YN ES R A roiaits

and the function f(x) changes sign in the interval [0, 1]. Here £(0) < 0, £(1) > 0. From the last inequalities and
the expression X; X, Xg=1 it follows that only one real root falls between 0 and 1. Using the third Chebyshev
polynomial

T,(x) =32x%—48x*+ 18x—1, 4]
constructed in the interval [0, 1], we can reduce Eq. (5) to a quadratic. The root of this equation lying in the

range [0, 1] gives a value for the dimensionless pressure p=Dless than 1. Therefore, we find the desired
root P from the equation
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Since of the two roots of this equation one is physically nonreal (less than 1), we finally obtain
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If o< 2, then
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and the function f(x) will still be negative at the point x=1, and so the root of Eq. (5) will be located in the range
[1, w]. We map this interval usi.ng the transformation x = % in the range [0, 1]. In this case Eq. (5) becomes
the equation

F)=—x*+bx* - ax+1=0. (10)
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Simultaneous consideration of Eqs. (7) and (10) allows us to choose a root located in the range [0, 1] and to use
it and the original equation (4) to find one physically possible solution for the pressure coefficient in the form
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The approximate values of the root p; of Eq. (2) determined from Eqs. (8) and (11), can be improved by the
method of [4], and one finally obtains
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The function f(p) is chosen using Eq. (2) at the point H=p;. The derivatives of this function for p=p; have the
form
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The results, determined using Eq. (12) for all 6 + Af, allowed in shock theory, and M > 2.5, give a highly ac-
curate root p of Eq. (2), since the values of f(p; +h,) in our calculations for 6 +A#6 from 5 to 40° and M. from
2.5 to 20 did not exceed unity in absolute magnitude in the fifth decimal place, Thus, the first approximation
corresponds to p;+h; and 6 +A#6,, where
AQ; = arctg __1[:__ .
pL+hy

2. Second Approximation (Weak Interaction)

Applying the arguments of [5] to our case, we note that weak interactions will appear for small 6 +A8,
and large Mach and Reynolds numbers, or for moderate supersonic Mach numbers and low Reynolds numbers.
These interactions will also appear for large Mach numbers and large values of 6 +A6;. As was true in [5],
the flow without viscous effects will be denoted by the subseript "first,” apart from the local parameters K
Mooy, and K@ =My (0 +A0). We shall take the pressure to be constant across the boundary layer and write it
without a subscript. Since weak interactions are characterized by the perturbation of initial flow conditions
caused by the hypersonic boundary layer, the ratio of local pressure on the dividing streamline to the local

in the form

pressure in the inviscid flow can be represented as a power series in
x
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pim = p, +h, and is given by Eq. (12).

where

The first coefficients of the series (13) in the tangent wedge approximation without correction for centrif-
. ugal forces can be calculated from Eq. (2) and have the form
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where C, = —2—(”—1—"'—]‘;1,1;—1)— and 0, = 0 + arctg — Y . From [5] for laminar flow in the boundary layer on the

M P 1
dividing streamline and without heat transfer from the surface of the imaginary wedge with semivertex angle
8 po WE obtain
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Here p is determined from the Sutherland formula, and A(Pr) and B(Pr) are functions of Prandtl number and
are given in [5] for Pr =1 and 0.725. The induced pressure, calculated from Eq. (13) for the appropriate value

of x, will be the second approximation. From it we find the increment in the angle caused by the blowing of gas,
using the relation

A8, —arclg _g’i— )

Pe
This approximation corresponds to thé imaginary wedge Surface with semivertex angle ¢ +Af,.

A third approximation for the pressure is obtained for the same value of x using Eq. (13). Here the flow
parameters without viscous effects in Eqs. (13)-(17) are determined using the angle by=6 +A8, The formula
for calculating the pressure reduces to the form
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The next approximations are calculated similarly. Clearly, the corresponding approximations for the pres-
sures on the dividing streamline form two intersecting series, tending to the same limit, The odd approxima-
tions tend to the limit from the left and the even approximations, from the right.

3. Third Approximation (Strong Interaction)

Strong interaction for bodies of general shape is characterized by quite large Mach number and quite low
values of Rex. In our case the static pressure p/p. and the displacement thickness 3*/x along the outer edge
of the boundary layer are given by the asymptotic series
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determined by solvmg the boundary-layer equations, and in the tangent wedge approximation are linked by the
relations
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Values of the latter constants have been calculated and tabulated, for example, in [6] for y =1.4 and values of
Pr of 1 and 0.72, for different thermal conditions on the wedge wall, Therefore, the second approximation for

the pressure in our case is found from Eq. (18) for the appropriate value of x, with the given value of To: a0,

and from the pressure we calculate the angular increment
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From these data, for the same value of x, in complete analogy with the weak interaction case, we determine a
third approximation for p/p. from the determinant parameter Kg o= =Mu (6 +A&0,y). Thus, the next approxima-
tions are determined,
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Fig. 1. The dimensionless pressure P on the dividing streamline
(a) andthe increment of angle A6 (b) as a function of the blowing
parameter 3, for different positions of the wall slope and unper-

turbed flow Mach numbers: a} 6 =20°, b} 0° 1) Mw=7; 2) 10;

3) 15,

TABLE 1. Values of Dimensionless Pressure at
the Shock and Effective Wedge Angle as a Func-
tion of Approximation Number

Approximation No, % 46,deg 6+40,deg
1 19,04 16,66 26,66
2 23,00 13,92 23,92
3 20,30 15,61 25,61
4 21,90 14,59 24,59
5 21,05 15,17 25,17
6 21,35 14,95 24,95°

For comparison, Fig, 1 shows part of the computations performed, in the form of p and A9 as a function
of different positions of the wedge wall, and for different blowing parameters and oncoming stream values for
the case Rex — (first approximation). When the viscous interaction is allowed for, 5-6 approximations were
enough to compute a single position of A¢. By way of example, Table 1 shows one of these calculations, illus-
trating the speed of convergence of the method under the following conditions: 6 =10° Me=7; Pr=0.725;
¥ =5.7; x=0.005 m; and H=30 km,

NOTATION

2;’;43:) ; p= %; P, pressure; m,
mass flow rate of blown gas, g/cm?- sec; Ty, temperature of blowing gas; T, stagnation temperature;
B=0.468; R;=8.314" 103J/deg- k- mole (gas constant); M, molecular weight of blown gas; 8,=0--26=0, =
a+A8; By, wedge semivertex angle; a, angle of attack; A6, increment of angle due to blowing; Kg = M0 w3
Kg =Mw6; Ky =My ; Rey, local Reynolds number; Pr, Prandtl number. hdices: 9¢ , o, conditions on the
contact surface and in the undisturbed flow,

Mo, Mach number of unperturbed stream; v, adiabatic index; Cp=
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